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Skew Brownian Motion: A Model
for Diffusion with Interfaces?

R. S. Cantrell and C. Cosner

Abstract. Skew Brownian motion is a diffusion process on the real
line with a distinguished point. A particle diffusing under skew Brownian
motion behaves as if it were experiencing ordinary Brownian motion except
at the distinguished point, but at the distinguished point it moves to the
left with a probability P or to the right with probability 1 — P, with P
not equal to 1/2. As such, skew Brownian motion may be a reasonable
model for diffusion with interfaces. An application is given to an ecological
model with two types of habitat. However, if skew Brownian motion is
formulated in terms of diffusion equations, assuming conservation of mass
leads to predictions that in some cases a nonzero number of individuals :
‘ must be at the distinguished point; i.e. that the probability distribution for ‘
: the position of a particle may include a delta function at the distinguished
point. In the ecological context there is some empirical work suggesting
; that individuals might in fact sometimes congregate on interfaces, It is
unclear whether this behavior is problematic in other modeling contexts.
The process of skew Brownian motion should be studied further to assess
its usefulness in modeling diffusion in the presence of interfaces.

§1. Introduction

Diffusion processes based on the concept of Brownian motion are widely used
to describe biological and chemical phenomena in which different species dis-
perse at random and interact. A variation on standard Brownian motion,
known as skew Brownian motion, allows for random dispersal but with an
; interface at which there is a preferred direction of motion. It is the purpose of
" this article to give a brief description of skew Brownian motion with some ref-
erences and a description of how we used it to model a problem in population
dynamics related to refuge design.

"The idea of skew Brownian motion was introduced as an exercise in a book
by Ito and McKean [3, §4.2, problem 1]. The properties of the process were
explored to some extent in (Walsh [6], Harrison and Shepp [2]). Essentially,
skew Brownian motion describes the position of an object moving on the real
line via an unbiased random walk, except when it reaches the point z = 0,
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74 R. 8. Cantrell and C. Cosner
where it moves one direction with probability « or the other with probability
1—a, a# 1/2. This last property suggests that skew Brownian motion might
be a reasonable starting point for the construction of models for dispersal in
the presence of interfaces. In fact, Walsh [6] suggests that it might be used
to model “a particle diffusing through a semi-permeable membrane under
osmotic pressure”. However, if the dispersal process is not allowed to increase
or decrease the total amount of dispersing material (or number of dispersing
individuals) it turns out to be necessary to allow particles (individuals) to
actually remain on or in the interface itself, at least temporarily. This point
is not mentioned in any of the references on skew Brownian motion, so we
perform the derivation in the next section, along with giving a description
and formulation of skew Brownian motion. In the third section we discuss a
model based on skew Brownian motion which was developed in (Cantrell and
Cosuer [1]) to describe population dynamics and dispersal in an environment
consisting of different types of habitat when the individuals in the population
prefer one habitat type over the other. The main point of that discussion is to
provide an illustration of how skew Brownian motion can be used in a model.
In the last section we draw a few conclusions about the use of skew Brownian
motion in modeling and suggest some directions for further research.

§2. Description and Anomalies of Skew Brownian Motion

Ordinary Brownian motion can be described as the limit of a random walk
where at each time step At the corresponding spatial step is either Az or
—Az, each with probability 1/2, where the limit is taken so that Az and
At approach zero with (Az)?/At = 62 for some fixed §. Skew Brownian
motion can be constructed in a completely analogous way, ezcept that there
is a distinguished point (say = = 0) for which the probability of moving to the
right is @ and the probability of moving to the left is 1 — o, with @ # 1 in
general. (Harrison and Shepp {2].) Both ordinary and skew Brownian motions
are diffusion processes which can be associated with semigroups of operators
{T; : t > 0} via the Chapman-Kolmogorov equations for their transition
functions (see [5]). The infinitesimal generator of the semigroup is computed
as
Af = lim 2f =1
ti0 4

and the associated diffusion equation is

du
== Au. )
In the case of ordinary Brownian motion the generator is 4 = (62/2)d?/dz?
with domain effectively being C?(IR) ([5, p.18]) so that the diffusion equation
(1) can be realized as

o _ o
gt~ 2 8z2?

for (z,t) € R x (0, 00). (2)
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(The transition function itself can be viewed as the fundamental solution of
(2).) It is common practice in mathematical modeling to begin with equation
(2) as a description of transport or dispersal via diffusion and then to add
additional “reaction” terms to describe chemical reactions, population dy-
namics, etc., and usually this causes no problems. However, some care must
be taken in using that approach for skew Brownian motion if we want a trans-
port mechanism which does not change the total amount of mass, population,
or whatever quantity is being described by the model. The corresponding
semigroup generator for skew Brownian motion was computed by Walsh {6].
2 52

z (3)

domA={f € C*(R\{0}) : af'(0+) = (1 — ) (0-), £"(0+)=F"(0-)}.

The realization of (1) as a differential equation becomes

" 2 2u
%’5 =3 2E (@) € (R\{0)) x (0,00),
adu du
——(0+,8) = (1 — a)z=(0—,1),
oz 5 Oz (4)

8%y
(—9;‘2‘(0+,t) = W(O—,t)-

If (4) is interpreted in terms of fluxes via Fick’s law, the flux (62/2)0u/0z
will be discontinuous at z = 0 if @ # 1/2 and 9u/8z # 0 at © = 0+ or
z = 0—. This suggests that one should expect material to build up on the
interface at z = 0, which suggests that there might be a nonzero probability
that a diffusing particle will be precisely at the single point z = 0, which
would be inconsistent with the probability measure for the location of the
particle being absolutely continuous with respect to Lebsegue measure. To
explore these ideas more carefully we restrict (4) to the interval [-1,1] and
impose reflecting (i.e. no flux) boundary conditions at z = +1. The resulting
equation is '

ou  626%

il A [(-1,0) U (0,1)] x (0, 00),

=0 o048 =0-0P0-1 5)
el EA g\ T T

0%y 0%u

EC-Z(OJFJ) = 555(0—,1&)-

If we think of u(z,t) as a function and integrate (5) over the inverval [—1,1]
with respect to z, we obtain

a [ 82 ° 0% 82 [t 8%
pr /;1 u(z,t)dz = 5 » %E(m,t)dw + oY ; W(m,t)dw
62 [Ou Ou
=2 — ) 6
> [Se0- - Seiono)] ©)

62 (2a—1\ Ou
-5 (F=5) sone
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To obtain a model where the total mass is conserved we would need to augment
the continuous distribution u determined by (5) with a point mass or Dirac
delta at £ = 0 multiplied by a time dependent coefficient p(t) satisfying

dp 6% (20 -1\ Bu
b_ ¢ ("‘“*1-0,)5;(0*’”' )

Since u(z,t) can be determined from (5) (e-g. via the sort of methods used
in [1]), equation (7) together with initial data for % and for the total mass at

¢t = 0 will determine p(t). The density will then be u(z,t) + p(t)6(z), with
p(t) # 0 in general.

§3. An Application

In [1] the goal was to model a situation where a population inhabits a region
consisting of two different types of habitat, diffuses freely within each habi-
tat type, but has a preferred direction (i.e. preferred choice of habitat) at
the interface between habitat types. We used skew Brownian motion as the
paradigm for describing movement at an interface with a preferred direction.
The specific scenario we examined was that of a refuge consisting of favor-
able habitat surrounded by a buffer zone of somewhat unfavorable habitat,
with the exterior of the buffer zone assumed to be immediately lethal to the
population. The model assumed a local population growth rate r inside the
refuge and a death rate —s in the buffer zone, The refuge was taken to be the
interval (0,2L) and the buffer zone to be (=£,0) U (2L, 2L + £). The model
for the population density u(z,t) was then given as

2
u = Dzzﬁ +ru in (0,2L) x (0,00),
ot Oz? (8)
Ou 0%u

‘8—t = DIB’;E - 8U in [(—-Z, 0) U (ZL, 2L+ Z)] X (O, OO),

Ou Ou
aDl-a—w(O‘i-,t) = (1 - a)DZEE(O_,t),

9)
Su du (
aDlag(ZL“:t) =(1- O‘)DZ%(ZL‘*"”’
8% 0%u
DZ;?F + U |g=pp= Dzﬂg — 85U |g=o, (10)
p,2u | _ p, P
253 +7U |pmgr = 1552 — 5u le=2r+,
u(—,t) = u(2L + £,) = 0. (11)

The equations (8) correspond to standard diffusion and growth or decline
within each subregion. The interface condition (9) is based on the condition
for skew Brownian motion, modified to account for the different diffusion rates
in the two regions, with o again representing the probability that an individ-
ual on the interface will move into the refuge. If @ = 1/2 the condition is
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equivalent to matching fluxes across the interface. For a@ > 1/2 there is a
preference for moving into the refuge. The equation (10) arises from the re-
quirement that the domain of the generator A of the diffusion processes should
be restricted to functions f(z) on (—£, 2L + £) such that (Af)(z) is continu-
ous. (This requirement is imposed so that individuals never get permanently
stuck at any location and so there are no impenetrable barriers to dispersal;
see [3, p.83-100].) Finally, the boundary condition (11) simply means that
individuals reaching the boundary die immediately so the density there is zero.

The model (8)-(11) can be analyzed via separation of variables. In [1] the
main goal was to determine the dependence of the average population growth
rate on the parameters r,s,4, I, and o. The average population growth rate
is determined as the principal eigenvalue of the operator A for which (8)-(11)
give the realization of du/dt = Au. The corresponding eigenvalue problem for
A.is given by the following, which arise from (8), (10), and (11):

8¢ .
Dy— +rp=0¢ in (0,2L),
d:l)v (12)
52

¢ _ .
Dla? sp=0¢ in (—£0)U(2L,2L +¢),

8 0

ale*is lo=0+= (1 ~ a)DT‘?' lo=0~»
9z Oz (13)
P 0

aDlEg lm:ZL-—= (1 —_— Q)ngg‘ ,z=2L+1

#(—£) = ¢(2L + £) = 0. (14)

In view of (12), equation (10) becomes the requirement that ¢(z) must be
continuous at ¢ = 0, 2L. It is possible to solve (12)-(14) by constructing the
eigenfunction ¢ in terms of trigonometric and (possibly) hyperbolic functions
and then using the matching conditions at z = 0 and z = 2L to determine o
via a transcendental equation. The conclusions of (1] were then obtained by
studying the dependence of ¢ on the parameters r,8,0,¢, L. A typical sort
of conclusion is that the average growth rate is most sensitive to an increase
of the size £ of the buffer zone when both the buffer zone and the refuge are
small, but the sensitivity to the size of £ decreases rapidly as £ gets larger ([1,
section 4]). Many other results on parameter dependence are also obtained.
The key point for the current discussion, however, is simply that a model based
on skew Brownian motion proved to be tractable and yielded reasonable and
useful conclusions in an applied context.

As is shown by the analysis in [1] it is not always necessary for the math-
ematical analysis to account for the possibility that there may be a nonzero
number of individuals actually on the interfaces at any given time. However,
this is a point that should be considered when evaluating the model from an
applied viewpoint. There is some empirical evidence that when confronted by
a barrier dispersing individuals of some species may stop or move along the
barrier rather than crossing it or reversing direction [4]. For such species a
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prediction that some individuals may remain at the interface for some time
is at least plausible. However, such an assumption might not be plausible in
other contexts, so the modelling approach should be used with some care.

84. Conclusions

The concept of skew Brownian motion seems to have some potential applica- ~,
tions in biological modelling because it can lead to reasonably tractable models ‘
which allow for a preferred direction of movement at an interface. However,
skew Brownian motion does not appear to have been widely studied from the
mathematical viewpoint, so if it is used in a model some care must be taken
in the analysis and interpretation of the model. The observation that skew
Brownian motion seems to require the introduction of a point mass at the ;
origin to avoid a gain or loss of particles via dispersal (i.e. without reaction
dynamics) may be problematic in some applications, although not in others.
In any case this point requires further study. Another issue which deserves o
some attention is that of formulating skew Brownian motion in more than one j
space dimension. Some other possible directions for further research are de- ‘
scribed in [1]. We hope that the present discussion will interest some readers

enough that they will examine skew Brownian motion themselves and draw
their own conclusions.
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